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two fixed 
shapes of the drop. In the case of a liquid drop in gas one of these shapes is al- 
ways unstable, It is shown that the dynamic head inside the drop can consider- 

ably exceed the dynamic head of the external flow and that the complex flow 

separation around the drop has virtually no effect on the shape of the drop and 
its stability. Such is the case of free fall of a water drop in air, when it is of 

shape elongated in a direction parallel to the flow. 

1, Certain rerultr of the exact rtrtement of the problem of 
rter8y motion of a drop. The steady axisymmetric motion of a drop of incom- 
pressible viscous fluid within another viscous incompressible fluid is considered. Let v+’ 
and 5,’ be, respectively, the velocity and vortex vectors of the motion of fluid outside 

the drop, p+ and v, be the dynamic and kinematic viscosities, and P+ the density of 

fluid outside the drop. The corresponding parameters of motion in the drop are v_‘, c_‘, 
p_, v_ and p_. Cylindrical coordinates X, y, a, are used with coordinate z taken along 
the axis of symmetry, y representing the distance from that axis,*and TV the angle ofele- 
vation. In such system of coordinates only the two first components of velocity vectors 
are nonzero, and of the vortex vectors I;+ and 5, only the third components are nonzero. 
At the drop surface S the conditions of equality of velocities and tangential StlWS@S 

and the condition of equality of normal stresses and surface tensions at the interface of 

the two media 
v* ‘,y’ u’ - I + = J v+’ 1, u_’ = 1 v_’ J 

P+ (5,’ + 234,) = p_ (C_’ + Zxv_‘) 
+ 

Pnn - Pm = 2Ho 
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where V. is the curvature of the generatrix of surface s, dI is the mean curvature of 
surface S, and d is the surface tension coefficient -are satisfied. 

In the system of coordinates attached to the drop,velocity v+’ at infinity must tend to 

a constant vector u (velocity of fluid at infinity). 
The Reynolds number fi+ of the external flow is assumed high, hence outside the thin 

boundary layer 6 N 1 / fl, f,l is a characteristic dimension of the drop) velocity 
V+’ is close to velocity V+ in a potential flow. 

A velocity field whose vortex vector is everywhere nonzero sets inside the drop. It can 

be shown that at the limit V_ --f 0 a velocity field whose elevation component of the 
vortex vector is proportional to the distance from the axis of symmetry 

L’-+ yo, 0 = const (1.2) 

obtains inside the drop. This is so,since in cylindrical coordinates o ’ = c / y satis- 
fies the equation 

(1.3) 

When v_ + 0 the quantity o’ remains constant along the streamline. Since the drop 
boundary is a streamline, 0’ at it tends to become constant. Since in the solutions of 

Eq. (1.3) the maximum and minimum are reached at the region boundary [l], hence 
everywhere inside the drop o’ tends to become constant when V, + 0. 

N o t e . 1, 1. The plane case was considered in [2]. 
Furthermore the Hadamard-Rybczynski solution [3] for slow motion of the drop shows 

that at high viscosity the quantity 0’ is nearly constant. 

It is, thus, possible to assume in estimates that inside the drop the motion has a constant 
vorticity, which implies that at the drop boundary for the velocity and the vortex c_’ N 
v_’ I 1 - 01. 

The motion of drops can be of two kinds. In the first case v_’ < v+ outside the drop 
close to the boundary S the flow is close to that in the boundary layer 6 at the solid 

boundary. The velocity v+ across the boundary layer thickness 6 varies considerably 

from v, to v+’ = v_‘. Outside at the drop boundary the vortex is c+ - v+ / 6, hence 

for the determination of the drop motion we obtain from the boundary condition the fol- 
lowing estimate for the characteristics : 

v_’ I v* - P+VKfP-< 1 (1.4) 

Estimate (1.4) is usually satisfied in the case of liquid drops moving in a gas. Thus for 
a water drop in the air the ratio f~+ / P_Z 0.02 and for Reynolds numbers R, N 100 
it is possible to assume that condition (1.4) is satisfied. 

For the fluid kinetic energy outside the drop T, and inside it T_ we can obtain from 
(1.4) the following estimates: 

2 PCv+’ R 
HP p-v_= + 

(1.5) 

Estimates (1.5) imply that in many practically important cases the kinetic energy of the 
internal motion in the drop is comparable to and may even exceed the kinetic energy of 

external motion. Thus for a water drop in air T_ / T+ - 0.3 R,. 
In the second case 

P+,Kf pL_> 1, Y’ -u+ (1.6) 

the velocity of the fluid potential motion outside the drop is of the same order as that 
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inside the drop. In this case the ratio of kinetic energies is of the same order as that of 
the ratio of densities 

T_ J T, - P_ f P+ (1.7) 

Estimates (1.5) and ( 1.7) show that in both cases of motion of drops in gas the internal 
motion and the surface tension have a greater effect on the shape and stability of &he drop 

than the external flow. The external flow has, however, a considerable effect on the drag 

and, consequently, on the free fall velocity. This can be proved with the use of similar 
estimates for the energy dissipation. Below the velocity of drop motion is assumed known, 
which simplifies the problem by avoiding the calculation of the complex separation flow. 

2. Th8 dynamic model of a drop. The distribution of normal stresses at 
the drop boundary differs at high Reynolds numbers only slightly from pressures of corre- 

sponding flows of perfect fluids. Hence it is possible to investigate the shape and stabi- 
lity of the drop using the theory of perfect fluids. In this approach to the solutionof the 
considered problem it is usual to assume that the flow inside a steadily moving drop as 
well as outside it, is potential [4 - 61. This means that motion is absent inside a steadily 
moving drop. However estimates (1.5) and (1.7) show that the steady internal motion 
in the drop is the determining factor for the shape and stability of the drop. 

At the limit of high Reynolds number a flow of perfect fluid is established inside the 

drop, where v_, 5_ (0, 0, 5_), P_ and p_ are, respectively, the velocity and vortex vec- 

tors, pressure, and density of the liquid drop. As previously shown by (1.2), the elevation 

component of the vortex is proportional to the distance from the axis of symmetry. 
If separation and the vortex trail are neglected in the flow around the drop, then it is 

possible to assume, as in [4 - 63, that outside the drop a separation-free potential flow of 

a perfect incompressible fluid (v+, p+, p+ are, respectively, the velocity, pressure and 

density of fluid outside the drop) takes place around the drop. This assumption is not an 
important restriction of the flow of gas past the drop, as shown above. At the drop bound- 
ary in the case of a viscous fluid conditions (1.1) must be replaced by condition 

v +n =v-n, p_-p+=ma 
which defines the conditions of equality of normal velocities and the jump of pressures. 

A solution which satisfies condition (1.2) inside the drop, the condition of flow poten- 
tiality outside it, and boundary conditions (2.1) can be obtained for any 0. The vorticity 

cannot then be determined by means of the theory of perfect fluids, it can only be derived 

in the case of a viscous fluid by using, for instance, estimates (1.5) and (1.7). 

Let the drop surface S be defined by the equation F (5, y, qi) = 0 . The general- 
ized coordinates pi and velocities qi’ (i = 1, 2 , . . . , N) define the position of surface 

S and the velocity of its motion along the normal. The kinetic energies of fluid inside 
and outside the drop is then a single-valued function of generalized coordinates Qi and 
velocities qi’, and also of the quantity that specifies the vorticity inside the drop. Hence 
it is possible to expect that the Lagrange equations are valid for the motion of the drop 

surface S . 
When the motion n&de-and outside the drop is potential, these equations can be de- 

rived from Euler’s equations [7 - 91. The Lagrange function is the remainder of the ki- 

netic energy of the combined motions inside and outside the drop and of the potential 
energy. The form of the Lagrange function for vortex motion is not known. 
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3. Tha Lqrrnga function, In conformity with [lo] we call the remainders 

AQ = Q (x + E (xl t), t) - Qo (x, t) SQ = Q (x, t) - QO (x, t) (3.1) 

respectively, the Lagrange and Euler variations of the characteristic Q that are induced 
by perturbations. In formulas (3.1) Q. (x, t) is the characteristic of the original flow, 

(J (x + 6, t) is the characteristic of the perturbed flow, and % (x, t) is the “infinitely 

small” Lagrangian translation induced by perturbation. Vectors x and x + % (x, t) de- 

termine coordinates of one and the same particle of fluid in the originalandthepetirbed 

flows at the same instant of time t. 
The relation between operations A and 15 

(3.2) 
is obvious. 

I 

Here and in what follows the same subscripts j = 1,2,3 indicate summation. 

By virtue of incompressibility we have 

div v = 0, div % = 0 (3.3) 

It follows from the definition of Lagrangian translation % that 

(3.4) 

Let $ be the streamfunction of the axisymmetric motion and g a similar function for 

vector %, then * g 
v=rotk-;j-, %=rotk- 

Y (3.5) 

where k is the unit vector normal to the meridian plane, and functions + and g exist in 

virtue of the incompressibility conditions (3.3). 
The velocity field inside the drop satisfies Euler’s equation 

dv 
Pdt=-VP (3.6) 

With the use of (3.4) we obtain the identity 

A+pv2= P 

whose integration over the drop volume V and time within the limits from tl to tn yields 

tr 

T = p$dT, 
s 

6T = pvllvdz 
s 

V V 

Using the equation of motion (3.6) and the condition of incompressibility (3.3) we can 
transform the integral of %p dv / dt to a surface one, from which 

f. 

SdtdT=$ pv%dT,t+[dt SpbndS 
t1 V t: s 

N 
Bn = En= x wiaqi 

i=l 

(3.7) 
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where bn is the displacement of the drop surface S along the normal when its gene- 
ralized coordinates are varied by the quantity ani. The position functions vi at the sur- 
face define the displacement of surface S along the normal for the unit variation of 
the f -th generalized coordinate. 

Let ‘1i (t) and dqi (t) be arbitrary functions specified along segment (tl, ta). At the 
ends tl and ts of the segment the variations of oqf and, consequently, also the normal 

displacement 6n are zero ap’i ,t, = Bq, ,tr= 0, 
an jt, = an it, = 0 (3.8) 

Equality (3.8) implies that at the initial and final instants of time t1 and t, the surfaces 
in the original and the perturbed flows are the same. 

The condition g It = 0 may be impaed on the Lagrangian displacement, which im- 
plies that in the origfnal and the perturbed flows the coordinates of fluid particles are 
the same at the initial instant of time t, . At instant of time t, the Lagrangian displa- 
cement % even for a potential flow is, generally speaking, nonzero, because the position 

of a fluid particle depends on the whole previous history of the motion of surface S, i. e. 

the fluid represents a nonholonomic system. 
N ote 3.1. It is usual to substantiate Lagrange equations by the proof given in the 

monograph [ll]. However that proof is untenable for the case of acyclic potential mo- 

tion of fluid. The monograph does not define operator D / Dt ; if it is meant to be the 

operator of the Lagrangian characteristic variation A, and the virtual velocity V is ta- 
ken as the Lagrangian displacement % (only then is the formula (16) valid in this case 
and operator D /Dt may be brought into the integrand of the integral over the volume 

which moves together with the fluid), then formula (15) assumes the form 

This formula, which lies at the basis of the whole proof, is valid when the fluid represents 
a holonomic system, while in the general case of acyclic potential motion it is invalid. 

Lagrange equations were obtained in [9] from the variational equation (3.7) in the case 
of potential motion in a simply connected region. In that case the first integral in the 

right-hand side of (3. ‘7) reduces to a surface integral which by virtue of (3.8) is zero. 
For a vortex motion that integral gives a substantial contribution to the Lagrange func- 

tion, Further deduction is associated with the transformation of the first integralin(3.7), 

for which it is necessary to introduce the following definition. 

Definition. Let the position of surface S be uniquely determined by the genera- 

lized coordinates qi (i = 1,2,. . ., N). We shall consider a medium as attached to surface 

S if the coordinates x of that medium depend only on the position of surface ‘S. 
Vectors x and v+ of coordinates and velocity of medium particles are functions of ge- 

neralized coordinates yi and velocities qi’ , and also of the Lagrangian coordinates x* 

of the medium N 

x = x (qi, x*j, v* zcz 
c 

$fPi’ (3.9) 
j=l z 

The Lagrangian displacement E* of the medium may be defined similarly to vector 
E of the moving fluid, For an incompressible medium attached to surface S VeCtOrS v* 

and t* satisfy the equations 
div v* = 0, div %* = 0, z + rot (g* x v*) = Bv* (3.10) 
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which are similar to (3.3) and (3.4). 
For an axisymmetric motion of an incompressible medium attached to the body we 

can introduce streamfunctions +* and g* 

9* 
v*=rotky, 

g* g* = rotk- 
Y 

(3.11) 

which are similar to (3.5). The substitution of (3.11) into (3.10) and (3.5) into (3.4) 

yields the following integrals for Eqs. (3.10) and (3.4): 

(3.12) 

67 ag* a -_ 
at -“i’* at=“*+, A*=~+c+- 

To transform the integral in the variational equation (3.7) we use the identity 

v (6 - g*) = div Tkxv 1 g;g* krotv 

which is easily obtainable from equalities (3.5) and (3.11). From this 

s 
v (g -g*) dT = + kxvndS+ 

V 5 
5 

e krotvdz (3.13) 
V 

At the boundary s vectors g and g*, as well as v and v* have the same normal com- 

ponents (E - g*) n 1s = 6, (v - v*) n Is = 0 (3.14) 

This implies that at the boundary S the remainders of “stream”-functions g - g* and 

$ - $* are constant. Taking the constant g - g* out of the surface integral sign, pass- 

ing to the volume integral, and taking into account that 

div ,d XV = - 0, 
1( ) 

k 

I 
y rot v = W 

from (3.13) we obtain 

5 v(~-P)dz=--oV(g--g*))B+s (g-g*)odz 
V V 

Using (3.12) the derivative of the remainder g - g* with respect to time along the tra- 
jectory of particles can be reduced to the form 

d (g - g*) 
dt =A$- A*$* + Vj-& (g - g*) = A (4 - q*) + 

div (g - g*) (v - v*) 

From this with allowance for the second of conditions (3.14) 

$ pvG-Z*)dz s --P~A(‘#-$*)I~+~\ po($-V’)dr (3.15) 
V V 

The remainder q - 9* is determined to within an arbitrary function of time which can 
be selected so that at the attached boundary II, - $* ls = 0. Integrating equality (3.15) 
with respect to time from tl to ta and taking into consideration that for the medium 

attached to surface S, g* = 0 at instants of time tl and 4 (definition (3.9) implies 
that the medium attached to the body istholonomic), we obtain 

(3.16) 
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Substituting (3.16) into (3.7) for the motion inside the drop we obtain 
rt fz 

T-- PO (9 - $*) dz 
s 
V 

For the motion outside the drop we have the equality [1X] 
tr 1, 

s 
dtbT+= - dt p+8n 

s s 
t1 t1 s 

Finally, from boundary condition (2.1) we readily obtain 
ta fl 

s dtboS = dt (p- - p+) 8n dS 
t1 

s 5 
t, s 

iyhere S is the drop surface area. 

(3.17) 

(3.18) 

Adding equalities (3.17) and (3.18) and subtracting from the sum the last equality, we 
obtain tt 

s dtsL = 0 (3.19) 

L(Q~,*~.)=T++T_-ooS-pp-os ($-$*)dr 
V 

Extremum of the variational equation (3.19) is the solution of the system of Lagrange 

differential equations. 
The considered derivation of Lagrange equations can be extended to more general ca- 

ses of fluid motion in volume V bounded by a deformable surface S. 

l”, Potential cyclic motion in an arbitrary M-connected re- 
g i on V. Region v is transformed into a simply connected one by the addition of M - 

1 partitions II, (k = 1,2,. . . M - i).Then 

(3.20) 

Qi=p S (v-v*)indS 

n;, 

where Y is the kinetic energy of fluid in volume V, Tk are circulations along mutually 

nontransferable contours, and Qk are the flow rates through partitions. 

2”. Plane-parallel cyclic motion with constant vortex o and 

a similar axisymmetric flow in an M-connected region. TheLa- 
grange function is of the form 

I&-l 

L=T- z1 r,QI;-~+H'*W (3.21) 

In the first case the Lagrange equations can be derived with the use of the identity 

-$- 1 (t-s*)ndS=a (V-v*)ndS 

=k 
d 

(3.22) 
k 

Note that owing to conditions (3.14) the integrals over partitions are independent of the 
selection of these, hence the law of motion of the partition can be arbitrarily specified. 
Let us assume that partitions I& move together with fluid. To prove the above identity 
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we use the formula for the derivative of the solenoidal vector stream through a fluid 
surface with respect to time [13], and the similar formula for variations 

$- 
d 

(&-p)ndS = 
dr 

$- (t -%*) + rot ((B - P) X v)] n dS (3.23) 

k k 

i3 1 (v -nn”)ndS = 
s 

(8 (v - v*) + rot ((v - v+) X g)] n dS 

=k Ilk 

Using Eqs, (3.3), (3.4) and (3.10) we obtain from this 

dt Cl jk6--E’)ndS--d \ (v-v*)ndS= 6 rOt[(g-~*)x,v-v*)]ndS= 

nk k 

$ (f-E*)X(v--v*)dl 

=k 

where Lk is the contour bounding partition II,+ Contour Lk lies on surface S. Vectors 

?B - %*, v - v* and dl lie in one plane (by virtue of (3.14) they are perpendicular to 

a single vector n), hence the last integral is zero, which proves the identity (3.22). After 

some obvious transformations and integration of identity (3.22) with respect to time, 

we obtain 

s PV~ dz It, = 
V 

1 div pU$ dz It, = Mi’ rk s &I dS It, = i dtfi y$: rkQk 
V k=‘l Irk t1 

From this and the variational equation (3.7) we obtain (3.20). 
To derive the Lagrange equations (3.21) it is sufficient to use the equality 

s pvg dz 1; = 5 dtd (;a; r&k’ + PO $ (9 - ‘#*) dt) 
V t1 

which is obtained similarly to (3.16). 
Note that Lagrange equations for the plane case are formally derived by substituting 

unity for II in equations of the axisymmetric case. 

4, Variational equation of rteady motion. Condition of rtabi- 
li ty , In the case of motion of a drop in an unbounded fluid the Lagrange function is 
independent of coordinate zO, which determines its translation along the axis of symmetry. 

Since the coordinate I,, is cyclic, it is possible to introduce the Routh function L”. 

(4.1) 

We eliminate velocity II = z,,* by using the law of conservation of momentum 

aLlalL = P (4.2) 

The Routh function E” is the Lagrange function of the reduced system with position 
coordinates Ql,. . ., yN, which define the shape of the drop [14]. The term Lo, which is 
independent of generalized velocities qr’, taken with the opposite sign is the potential 
energy U of the reduced system. To calculate U it is sufficient to set qi’ = 0 in for- 
mulas (3.19), (4.1) and (4.2). Taking into account that 

Ip = cl&& V = 0 (4.3) 

T, = 1/s Mua, T_ = 1/2 (&vu’ + 10’) 
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WI: 

( 
8 I32 1 a 

a,z+ayz-yay Sw=-Y21 &Is=0 
) (4.4) 

hence it is possible to obtain for U the following formula: 

PZ 2 
u= 2(M+p_V) f$02+oS (4.5) 

The condition of equilibrium of the reduced system, viz. b U = 0 , corresponds to the 
condition of steady motion of the drop. The condition of stability of that motion is 

PiJ > 0. Effecting related variations at constant volume of the drop, we obtain the con- 

dition of stability of steady motion of the drop 

The variational equation for the steady motion of the drop may be obtained directly 
without the use of Lagrange equations. 

For the variation of apparent mass [12] and of surface area we have the following foc- 

mulas : 
+qM+p+V)=~ 

s 
v,?ndS (4.7) 

F 

6s = 2Hdn dS 
s 
S 

To obtain similar formula for 61 we use the identity 

S (ArotrotB- BrotrotA)dz= (BxrotA-AXxotB)ndS 
s 

V S 

Setting in it 
W&l 

A=kya B=k+ 

and taking into account that ~&is the streamfunction for the motion of fluid with unit 

vocticity rot rot A = 0, rot rot B e ky, $bIS=O 

we obtain 
$&~~d~=-~~kX~otk~~d~=-~~~d~ (4.8) 

The Lagcangian variation I&, on surface S is zero, since (B, is identically zero on S , 
hence from (3.2) follows that a*, 

-&&=,,bn 

Substituting Euler’s variation aS, into (4.8), we obtain the required formula 

+ &I = -$z 

5 

v_2bn dS 

From the Bernoulli integral and the boundary condition (2.2) follows that 

(4.9) 
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-2Ho)dndS+onstdndS 

S 
(4.10) 

The variational equation (4.6) is readily obtained from (4.8) - (4.10) with an accuracy 
to within CbV. 

Since for the determination of the drop shape by the variational equation(4.6) 6V = 0 

is assumed, hence constant c is immaterial. 

Thr rlliproidrl drop. The complete investigation of the drop dynamics neces- 

sitates the introduction of an infinite number of generalized coordinates. However the 

variational equations (3.13) and (4.6) make it possible to obtain approximate solutions 

of this problem. For this it is sufficient to consider some class of surfaces S with a fi- 
nite number of degrees of freedom. 

Let the drop surface have the form of an ellipsoid of revolution 

@ - ro12 
1,= + ‘;L 

2 - 1 = 0, l,lv2 = 13 (5.1) 

The position of surface S of ellipsoid (5.1) may be specified by two generalized coor- 
dinates x,,of the center and x = Z, I 1, which is the ratio of the ellipsoid axes. 

To calculate the Lagrange functioh (3.19) it is necessary to determine: (1) the kinetic 

energy of the external potential motion, (2) the kinetic energy of fluid motion with con- 

stant vorticity inside the drop, and (3) the streamfunction for the motion of the medium 
attached to the body and the streamfunction for the flow of fluid inside the drop. 

Solution of the first problem is given in [8]. We pass to the solution of the second and 

third problems. 
Motion of the medium attached to the bodv may be specified by the superposition of 

two transformations x = xs + x’; 2’ = ~x-‘f’x* 

Y = Y’; yt = lfl’y* 

The field of velocity U* determined by (3.9) is 

* v, = 2 x’ u -xyx’, u = X0’ (5.2) 

* 1 x’ v, =--yy’ 
3 x 

It is not difficult to ascertain that the velocity field (5.2) is solenoidal and also potential. 

The streamfunction $*for that field is 

Function \I, may be represented bv the sum 

9 = V f OjJU (5.4) 

where \p,, is obtained by solving the boundary value problem (4.4). For the ellipsoid( 5.1) 
the solution of that problem is of the form 

(5.5) 

which for x = 1 yields the known streamfunction for the spherical Hill vortex [ll] . 
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For the determination of kinetic energy of the drop it is convenient to use the equali- 
ties 

V = v* + %W vs = v,’ + vwB + 2 div (@*vJ , 

where v, is the velocity field of the fIuid whose streamfunction is a$+,, and CD,,, is the 

potential of the velocity field v,. 

Integrating the last equality over the drop volume and taking into consideration that 
vector v* is perpendicular to the normal to surface S, for the kinetic energy of thedrop 

we obtain ‘_=+L $ (v*” + v;“) dr 

Finally, using the identity 

2 VW =o w&+div 
( 

we obtain the definitive formula for the kinetic energy of the drop 

T_ = T_* + + dr, T_” = 9 v&It, 
s 

I+ 
V s 

q&z (5.6) 

where T_” is the kinetic energy of fluid inside the drop in the absence of vorticity ; it 
is equal the sum of the kinetic energy of the drop moving as a solid at velocity u and of 

the kinetic energy due to the deformation of the drop boundary, Substi~ting (5.6) into 

(3,19), we obtain the Lagrange function 

L = T, + T *_- V2w2.1 - OS, T, = l/,jjfua (5.7) 

1 

s dx 
1+(x-2--1)& 

cl 

where functions a (x) and b (II) are expressed in the intervals 0 < 1~ ( 1 or 1 < 

x < 00 in terms of inverse trigonometric or hyperbolic functions. Substituting func- 
tions (5.7) into (4.6), we obtain for the stable steady motion of the ellipsoidal drop the 

following conditions : 
- m’ + QAi’ -+ (1 I w) a’ = 0 (5.8) 

- n” + $&. + Qhi” + (.&) f> f-J 

!a 0214 P- 
=-) hx_ ux P+ ’ 

w - uay 

where primes denote derivatives with respect to X. 

System (5.6) shows that the stable “equilibrium” of the drop depends on threedimen- 

sionless quantities, and not on the single Weber number, as is usually assumed [4]. 
It should be noted that inequality (5.8) is the necessary condition of stability but is 

not sufficient, since stability with respect to perturbations of a special form and with the 
drop retaining its ellipsoidal shape is considered here. Reversal of the inequality sign 
yields the condition of the drop instability. 
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In the system of coordinates 1 / W, C&t (Fig. 1) the first of Eqs. (5.8) defines a one- 
parameter set of straight lines which determine all states of equilibrium of the drop. 
Each straight line is tangent to the envelope of the set which is represented in Fig. 1 by 
the heavy solid line f = O, ,.of, ax = O 

(5.9) 

f (X, Qh, 1 I w) = -m’ + S&i’ + (1 I w) 5’ 

To every point of the envelope corresponds a single completely determinate value of 
parameter II such that the tangent at any of its points represents the line of the drop 
equilibrium state for the same value of parameter X. In Fig. 1 values of X = 0.2, 0.4, 

0.6 ,. a ., 3.6 are indicated by short cross lines. 

Fig. 1 Fig, 2 

The dependence of the angle of slope of a tangent to the envelope on X is defined by 
function - s’ / i’ and is shown in Fig. 2. The monotonic decrease of that function in- 
dicates that the envelope is convex, 

The envelope separates the coordinate plane in Fig. 1 into two regions. In the first of 
these bounded by the envelope and the abscissa axis no equilibrium states are possible . 
If the point defined by coordinates I / W, SEih lies in the second region, the extent of 
drop deformation in the equilibrium state can be determined by drawing from the point 
a tangent to the envelope,and the tangency point determines the value of parameter II. 
To each pair of numbers 1 / W, Pi correspond two equilibrium states with different 
axes ratio 31. For example, when 1 I W 5 0.6 and Qh =S 60 , the drop has twoequi- 
librium states with x m 0.9 and X z 2.3. 

Stability of the equilibrium shape of the drop is determined by inequality (5.8) and 
depends on three dimensionless quantities, viz. 1 / w, Ph and h. At each of the 
straight lines of equilibrium states with a constant X there exists a point which separates 
stable states from unstable ones. The position of that point depends on h. 

6, T ha cloe of k>> 1. The motion of a liquid drop in gas belongs to this cate- 
gory. A fairly simple geometrical interpretation of the stable states of the drop can be 
given in this case. 
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At the limit A --+ co with &!h = const we obtain from system (5.8) 

(6.1) 

At each straight line of the sets of equilibrium states function af j 8~ changes its sign 

at the point of tangency with the envelope and, consequently, in conformity with (6.1) 
a change of the stability state takes place. The state of the drop is stable when the vec- 

tor drawn from the tangency point to point 1 / W, I;ah is poin~ng in the directionofin- 
creasing parameter x, and unstable when that vector is pointed in the opposite direction. 

In Fig, 1 stable states are shown by the solid straight line and the unstabIe ones by the 

hatched line. For example, when 1 1 W = 0.6 and Oh = 60, II zs 0.9 and x szs 
2.3 correspond to stable and unstable states, respectively. 

It is seen from Fig, 1 that for S%& 56 the extent of drop deformation is defined by 
X < 1, i.e. the drop is elongated in the direction of the flow velocity. In the opposite 
case, when Qh 6 56, x > 1 and the drop is compressed in the direction of the flow 

velocity. 
When condition (1.4) is satisfied, the order of magnitude of parameter Gh can be esti- 

mated by (1.5) as I 

The ratio m / i varies from 40 when X ==: 0.2 to 120 when 31’2: 3.5. When X = 

1, m/i= 44. For the estimate we assume m / i iz: 50, then 

s2hu50~R, (6.2) 

In the case of a water drop in air Q?L N 15 R,, hence at high Reynolds numberswater 

drops are elongated in the direction of the air flow, 
Three particular cases of motion of drops merit consideration, They are as follows: 

1) the kinetic energy of the fluid outside the drop is considerably lower than the 
sum of the drop kinetic energy and of the potential energy of surface tension T, < 

T- + 05; 
2) the kinetic energy of the drop is considerably lower than the sum of kinetic 

energy outside the drop and the potential energy of surface tension T_ < T, + CL!?; 
3) the potential energy of the drop surface tension is considerably lower than the 

sum of kinetic energies of fluid inside and outside the drop OS < T_ -k T, 
The state of equl~brium in these three oases is completely determined by a single di- 

mensionless parameter, whose dependence on X is readily obtained from the equilibrium 
equation (6.1) by neglecting the first, second and third terms, respectively 

(6.3) 

The curve of the first function in (6.3) plotted in Fig. 2 shows that the equilibrium 

shape of all drops is an elongated one (X < 1). 
In this case the condition of stability is obtained by substituting the first of formulas 

(6.3) into (6.1) and neglecting the term m* 

$+>o 

Since function .# / i’ monoto~cally increases (Fig. Z}, all states of equi~brium of 

the drop are stable. 
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These results may be obtained by geometric means with the use of Fig. 1, by taking 
into consideration that at the limit when one of the parameters 62& or 1 / W tends to 
infinity, the lines of equilibrium state are tangent to the envelope at points X < 1. 

All these states are stable. 
The second limit case of (6.3) of absence of flow inside the drop was investigated in 

[S-J. Function w (X) monotonically increases up to X s 3.7 , reaches its maximum 

WG 1.63 , and then monotonically decreases. A similar, but apparently less exact 

form of function w (x) was derived in [5] by another method. 

N o t e 6.1. The above analysis implies that the equilibrium state of the drop is stable 
even when x +- 0, which is at variance with the physical meaning. This is explained by 

that the state of the drop is stable.with respect to perturbations for which it retains its 
ellipsoidal shape, but may lose its stability when subjected to some other perturbation. 

Fairly elongated drops will be evidently unstable with respect to perturbations of the form 

of radial expansions and compressions in the equatorial plane of the drop, as is the case 
of capillary jets which in the Rayleigh theory are unstable [12]. 

It is thus necessary to supplement the condition of stability by the condition that x > 
&, where X* is a certain critical value of the drop deformation. 

N o t e 6.2. The second case of (6.3) obtains when a quiescent drop is hit by a stream 
of gas. The characteristic time of establishment of a vortex flow inside the drop is t N 

i2 I v_, ELI the course of which it covers the distance ut N IRy, I v_. For a water drop 
in the air that distance exceeds the drop dimension a thousand times, and may substan- 

tially exceed the distance passed by the drop during the observation time. The vortex 
inside the drop cannot develop and may, therefore, be neglected. 

N o te 6.3. Function W (x) was independently determined for Qh = 0 in [15, J.61 
in the solution of the problem of motion of an ellipsoidal bubble,using the same methods 

as in [S, 63, respectively. The problem of stability was not considered in [4 - 61. The 

statement about the instability of the fixed shape of a drop along the decreasing section 
of function W (x) is not obvious and valid at the limit 3L -+ 00. It was shown in [lS] 
that all equilibrium shapes are stable. 

It will be seen from Fig. 1 that at the limit Q2h ti 0 stable states of the drop occur 

when W < 1.63 and x < 3.7. The same result can be obtained from the stability 

condition (6.1) by substituting into the inequality the second of formulas (6.3) 

This the increasing section of function w (x) corresponds to stable states of the drop. 
Analysis of the third case of (6.3) which corresponds to the limit ‘l / W + 0 shows 

that all states of the drop are unstable. This is the case of fairly large drops in which the 

stabilizing effect of surface tension on the drop stability is negligibly small. It is obvi- 
ously natural that such drops cannot be in a stable state. 

The author thanks L. I. Sedov for discussing the results of this work, and also P. A. Pet- 
rosian and 0. V. Voinov for useful remarks. 
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